Non-functional requirements in the ELASTIC architecture

DeCPS 2019 - Workshop on Challenges and new Approaches for Dependable and Cyber-Physical Systems Engineering

Luís Miguel Pinho
ELASTIC: A Software Architecture for Extreme-ScaLe Big-Data Analytics in Fog Computing ECosystems

3-year H2020 RIA project (Dec-2018, Nov-2021)

Website: https://elastic-project.eu/

Coordinator: Eduardo Quiñones, BSC, Spain

Partners
Outline

- Motivation
- ELASTIC Concept
- Programming Model
- Use Cases
- Non-Functional Requirements
 - Time
 - Energy
 - Communication Quality
 - Security
Extreme-scale analytics are more and more a key enabling application for smart systems

- process huge amounts of heterogeneous data, geographically dispersed, both on the fly and at rest
- necessity to fulfil non-functional properties inherited from the system (real-time, energy efficiency, communication quality or security)

Providing the required computing capacity for extreme-scale analytics is of paramount importance

- dynamically manage resources as needed, guaranteeing required levels of service
- consider the full architecture of the system, from the Edge devices to cloud infrastructures
Motivation

- **Challenge:** fulfil non-functional properties
 - including real-time, energy-efficiency, quality of communications, security
 - need to consider these in a holistic way, as they are interdependent

- **Challenge:** limits of the existent elasticity concept
 - in which cloud computing resources are orchestrated to provide maximum throughput
 - does not take into account the computing resources located on the edge
 - elasticity mainly focuses on system throughput, without taking into account the non-functional properties

- **Need to address these two challenges along the compute continuum, i.e., from the edge to the cloud**
 - paramount importance to take full benefit of extreme-scale analytics in smart systems, in industrial and societal environments
 - there are no known end-to-end solutions applied along the complete compute continuum
ELASTIC will develop a software architecture incorporating a new elasticity concept

- Efficiently distribute the workloads across the compute continuum, whilst guaranteeing non-functional properties

The fog paradigm and the extreme-scale analytics promoted by ELASTIC fits with current big data analytics design trends

- On one hand, the priority may be to provide quick and reactive information, possibly in real-time, based on the flowing stream of data, which typically implies focusing on the most relevant aspects of the stream (data-in-motion)
- On the other hand, the priority may be to provide thorough and more consistent responses, which typically implies aggregating as much information as possible into larger models (data-at-rest)
- Despite their capabilities being complementary, both approaches have been historically tackled separately, given their apparently incompatible system requirements.

The new elasticity concept promoted by ELASTIC will leverage the fog computing paradigm to fully exploit the benefits of both approaches into a single, transparent, extreme-scale analytics solution
Cloud computing

Edge computing

Elasticity across the Compute Continuum
Data-in-motion analytics
Data-at-rest analytics
Extreme-Scale Analytics
Cloud computing
Edge computing
ELASTIC Concept

Compute Continuum

Cloud computing

Edge computing

Data-in-motion analytics

Data-at-rest analytics

Extreme-Scale Analytics

Cloud computing

Edge computing

Cloud computing

Edge computing
Elasticity across the Compute Continuum

Cloud computing
Data-at-rest analytics

Edge computing
Data-in-motion analytics

Extreme-Scale Analytics

Elastic Concept
ELASTIC Concept

- ELASTIC software architecture will take into consideration a number of trade-offs
 - performance, precision/accuracy, non-functional system properties
 - dynamic management of computation
- Edge devices may deliver the time-predictability needed to implement real-time functionalities
 - but do not provide sufficient computational power to run analytics
 - fast and time-predictable, but limited, precision algorithms will be deployed on the edge-side for data-in-motion
- Cloud computing resources provide the computation capabilities to support complex analytics
 - but communication delays may make systems unstable
 - cloud resources will be used to run only accurate but costly models for the long-term refinement and global modelling
Programming Model

- Computation Distribution based on COMPSs
 - Software framework developed by BSC for applications targeting distributed infrastructures
- Implements a **task-based programming model** for Python, C, C++, Java
 1. Tasks identifies **units of parallelism** to be scheduled in other computing resources
 2. Defines in/out **data dependencies** among tasks
 3. Defines **constraints** on task scheduling
- Simple linear address space and agnostic of computing platform

```python
def pow(a, b):
    b = a*a
...
for i in range(MSIZE):
    pow(A[i], B[i])
```

```python
@constraint(ComputingUnits=4)
@task(a=IN, b=OUT)
def pow(a, b):
    b = a*a
...
for i in range(MSIZE):
    pow(A[i], B[i])
```
Internal Structure of COMPSs

- **DAG creation** identifies the data dependencies and creates the *task dependency graph* (TDG) at run-time.

- **Scheduling and lowering** distributes tasks to compute resources and transforms operators to calls to move data.

- **Platform adaptor** provides the interface to interact with the computing resources below.

```python
@constraint(ComputingUnits=4)
@task(a=IN, b=OUT)
def pow(a, b):
    b = a*a
```
1. New scheduling techniques across the compute continuum

2. New constraints considering the distribution of the continuum and non-functional properties

3. New platform adaptors supporting the fog architecture

Scheduling of big-data workloads along the compute continuum fulfilling non-functional properties
ELASTIC Use Cases

- A realistic set of use-cases from the smart mobility domain, applied in a light rail system
 - Next generation autonomous positioning
 - Advanced driving assistant system
 - Interaction between the public and the private transport
 - Predictive maintenance

- The architecture is intended to be generic
 - Requirements from other domains have also been considered
 - Automotive, Avionics, Smart Manufacturing
Non-Functional Requirements
Non-functional Requirements

- **Real-time computing**
 - Real-time data analytics is becoming a main pillar in industrial and societal ecosystems, with the combination of different data sources and prediction models within real-time control loops
 - Unfortunately, the use of remote cloud technologies makes infeasible to provide real-time guarantees due to the large and unpredictable communication costs on cloud environments

- **Mobility shows even increased trade-offs and technological difficulties**
 - Mobile devices are largely constrained by the access to energy
 - Mobile devices suffer from unstable communication, which may increase random communication delays, unstable data throughput, loss of data and temporal unavailability.

- **Security is a continuously growing priority**
 - affects data integrity, confidentiality and potentially safety.
 - Strict security policy management may hinder the communication among services and applications, shrinking overall performance and real-time guarantees.
Non-functional Requirements

- Interdependency between non-functional properties provides further challenges
 - Processing time and energetic cost of computation is reduced as data analytics is moved to the cloud ...
 - ... but the end-to-end communication delay and the latency of the system increases and becomes unpredictable
 - As computation is moved to the cloud, the required level of security increases to minimise potential attacks
 - ... which may end up affecting the safety assurance levels, hindering the execution and data exchange among edge and cloud resources.

- The ELASTIC architecture must include
 - mechanisms which allow the specification of the required level of non-functional properties
 - the offline analysis of the parameters to determine an appropriate system configuration which enables fulfilment of requirements
 - an online monitoring and analysis capability which is able to trigger configuration changes upon detection of level violations
Applications’ Parameters

Holistic Analysis

Timing Analysis

Energy Analysis

Security Analysis

Safety Analysis

... Analysis

System architecture

Deployment configuration
Time-related requirements, e.g.

- Hard and soft real-time control loops
- Response-time in the order of milliseconds
- Processing rates in the order of thousand/sec
- Worst-case execution time estimates and analysis
- Support to multi-core and many-core
- Support to mixed-criticality
- Energy-related Requirements, e.g.
 - Energy monitoring capabilities
 - Energy-efficiency at the Edge
 - Speed scaling techniques
 - Multiple modes of operation
Communication Quality

- Communication-related Requirements, e.g.
 - Tens of required protocols
 - Dataflow QoS
 - Critical flows
 - Latency and bandwidth requirements
 - End-to-end reliability, integrity
 - Support to priorities
Security-related requirements, e.g.
- Authentication
- Encryption
- Secure access to data
- Adherence to security standards
- Specific GDPR-related requirements
ELASTIC intends to develop a software architecture for fog ecosystems
 - incorporating a new elasticity concept, efficiently distributing workloads across the compute continuum

ELASTIC targets smart systems, where non-functional requirements are of paramount importance
 - Time, energy, communication quality, security

A specific component of the architecture will deal with non-functional properties of applications
 - Guiding the ELASTIC orchestrator and component managers
Thank you

Contact: LMP@isep.ipp.pt